Мечты об окончательной теории

Продвинутая

Автор: Стивен Вайнберг

Издательство: URSS

ISBN: 5-354-00526-4

Год выпуска: 2004

Количество страниц: 253

Оригинальное название: Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature

Оглавление
Предисловие

6

Глава I
Пролог

8

Глава II
О кусочке мела

20

Глава III
Похвала редукционизму

44

Глава IV
Квантовая механика и её критики

54

Глава V
Рассказы о теории и эксперименте

73

Глава VI
Красивые теории

105

Глава VII
Против философии

131

Глава VIII
Блюзы XX века

150

Глава IX
Контуры окончательной теории

165

Глава X
На пути к цели

180

Глава XI
А как насчёт Бога?

188

Глава XII
В округе Эллис

203

Послесловие ко второму и зданию книги. Суперколлайдер один год спустя 214
Примечания 219
Именной указатель 243
Предметный указатель 247

Квантовая механика и специальная теория относительности, одни из наиболее успешных теорий XX века, в ходе увлекательной истории успешных шагов и ошибок были объединены в единую теорию электромагнитного, слабого и сильного ядерных взаимодействий, в которой определяющую роль стали играть принципы симметрии. Но после этого завоевания наступил «мёртвый сезон», так как для дальнейшего прогресса нужны были эмпирические данные, которые можно было получить при энергиях, недоступных в существовавших на тот день экспериментальных установках. Одним из предложений по выходу из тупика был проект сверхпроводящего суперколлайдера (ССК), гигантского ускорителя частиц. Как часто бывает, идея была прохладно встречена конгрессменами и другими людьми, лучше учёных понимающими, как следует развивать и какие средства необходимо вкладывать в фундаментальную науку. Во время подготовки к печати второго издания книги Палата представителей проголосовала против программы строительства ССК. Стивен Вайнберг участвовал во многих публичных обсуждениях и защите этого проекта, в ходе которых, по его словам, для него не так просто оказалось объяснить, что учёные пытаются выяснить, изучая процессы взаимодействия частиц высоких энергий. Поэтому одним из намерений, с которым создавалась книга «Мечты об окончательной теории», было доступное изложение ключевых принципов фундаментальной физики и вопросов, возникающих при обсуждении самой идеи окончательной теории.

Значительную часть книги Стивен Вайнберг посвящает трём историям о достижениях физики в XX веке, на примере которых показывает, какими критериями руководствуются физики в процессе своих исследований. Почему к середине 1920-х годов, несмотря на скудность подтверждающих эмпирических данных и ещё до проведения каких-либо строгих экспериментов, новаторская теория тяготения Эйнштейна стала общепринятой как корректная теория тяготения, и с того момента положение дел не изменилось? Наоборот, почему, несмотря на то, что в её пользу говорил большой массив эмпирических данных, квантовая электродинамика воспринималась не как корректная теория, а как модель, справедливая для описания процессов с участием фотонов, электронов и позитронов малых энергий? Рассматривая историю этих дисциплин и историю объединения слабого ядерного взаимодействия и электромагнетизма в единую теорию электрослабой силы, Стивен Вайнберг подчёркивает, что зачастую происходит наивная переоценка экспериментальных данных, а в то же время играют роль другие научные критерии, в частности принцип простоты и принцип красоты. Не исключено, что они изложены в книге «Мечты об окончательной теории» самым тщательным и понятным образом, который только можно найти в литературе.

Существующие теории ограниченны, неполны и не окончательны. В процессе научного поиска они объединяются и объясняются исходя из всё более глубоких и общих принципов, и это движение идёт отнюдь не в беспорядочных направлениях. Если мысленно двигаться в обратном направлении, от общего к частному, то перед нами предстаёт картина выходящих из одной точки объяснительных принципов. Под точкой, к которой идут все объяснения, и подразумевается окончательная теория. Однако откуда следует, что это схождение объяснений, напоминающее схождение меридианов к Северному полюсу, в конечном итоге пересечётся в одной точке? Стивен Вайнберг объясняет, почему малообоснованны позиции, что последовательность всё более фундаментальных теорий не будет ни сходящейся, ни бесконечно продолжающейся, ни замкнутой самой на себя. Очевидно, что Стандартная модель не является окончательной теорией, и, чтобы выйти за её пределы, нужно понять как её краеугольные принципы, так и недостатки, которые в книге «Мечты об окончательной теории» и объясняются перед тем, как рассказать о самой концепции окончательной теории; о том, как мы можем продвинуться в сторону её построения; по какой причине квантовая механика и ОТО должны в неизменном виде стать частью окончательной теории; какие принципиальные проблемы возникают в теориях, претендующих на окончательные, и какие существуют идеи их решения; какое влияние на человечество может оказать формирование окончательной теории.

В противовес рассмотрению методологических принципов, играющих важную роль в физике, в книге уделено внимание концепциям, излишняя приверженность которым в различные исторические периоды сыграла негативную роль в науке. Например, среди них Стивен Вайнберг выделяет механицизм — идею, что явления природы сводятся к движению и взаимодействию материальных частиц. Начиная с Левкиппа и Демокрита, в эпоху досократиков он оказал положительное влияние на развитие науки той эпохи и противостоял популярным верованиям в богов и демонов. Но влияние доктрины механицизма излишне затянулось, что препятствовало принятию идей Исаака Ньютона, в которых использовался принцип действия на расстоянии. В качестве примера концепций, оказавших негативное влияние на современную науку, рассматривается позитивизм, а точнее его принцип, что любое используемое в теории понятие должно определяться через наблюдаемые величины. Зацикленность на этом принципе сыграла известную роль в неприятии атомизма, молекулярно-кинетической теории и статистической физики. Так, идеи Людвига Больцмана не были приняты в научном сообществе, что, возможно, и стало причиной депрессии и самоубийства одного из основоположников статистической физики. Эрнст Мах, являвшийся одним из самых известных сторонников позитивизма, писал: «Если вера в реальность атомов является столь критической, тогда я отказываюсь от физического образа мышления. В этом случае я не могу оставаться физиком-профессионалом и отказываюсь от своей научной репутации», — несмотря на то, что в физическом сообществе атомизм в целом уже был признан. Стивен Вайнберг также отмечает, что приверженность позитивизму препятствовала развитию квантовой теории поля и теории кварков. Например, подходы к вычислению S-матрицы (оператор, связывающий начальные и конечные состояния частиц) развивались таким образом, чтобы в них не фигурировали ненаблюдаемые элементы. По причине излишней сложности этот подход не увенчался успехом, более того, развитие теории слабого и сильного взаимодействия в дальнейшем было неразрывно связано с идеями, которые в силу приверженности позитивистскому подходу отвергались.

Угрозу современной науке автор видит в релятивизме и критиках, стоящих на его позициях. И если волна критики началась с попытки Томаса Куна поставить под сомнение объективность научного знания, то в дальнейшем она переросла в тенденцию рассматривать науку «всего лишь как ещё одно социальное явление, не более фундаментальное, чем культ плодородия или шаманство» и призывы «отделить науку от общества». Стивен Вайнберг подчёркивает, что из трактовки и рассмотрения науки как социального явления не следует, что научные теории необъективны и являются условностью, сложившейся в силу общественных исторических факторов.

Заключительная глава книги посвящена вопросу «поиска божьего замысла в законах природы» и начинается с фрагмента диалога в офисе Палаты представителей в Вашингтоне, где Стивен Вайнберг защищал проект ССК. «Мне кажется, доктор Вайнберг, что вы близко подошли к этому, и хотя я не уверен, но записал вашу мысль. Вы сказали, что подозреваете, что не случайно существуют законы, управляющие материей, и я пометил у себя, что не поможет ли это найти бога. Я уверен, что вы не говорили этого, но действительно ли это поможет нам узнать столь многое о Вселенной?» (Слова конгрессмена Гарриса Фавелла.) Стивен Вайнберг воздержался от высказывания своей позиции о поиске бога на ССК, так как оно не пошло бы на пользу проекту. В книге изложено последовательное объяснение его позиции, что в процессе всё более глубокого развития физических теорий движение идёт в обратном направлении — к всё большей безличности законов природы. Начало ему было положено демистификацией небес, продолжено развитием органической химии, а затем и эволюционных идей. Одной из немногих современных зацепок сторонников поиска замысла бога в законах природы является так называемая проблема тонкой настройки, мнимое впечатление, будто значения фундаментальных констант специально подобраны для того, чтобы во Вселенной возникла разумная жизнь. Стивен Вайнберг рассматривает планету Земля-штрих, вечно затянутую облаками, жители которой не имеют представления об астрономии. Сперва они считают поток в 1,99 калории в минуту на один квадратный сантиметр настроенной для жизни фундаментальной константой, но в будущем понимают, что это просто следствие того, что планета находится на расстоянии в одну астрономическую единицу. Соображение такого же характера можно высказать насчёт значений фундаментальных констант, производящих впечатление тонко настроенных: это следствие недостаточного развития современных физических теорий, объяснение будет получено в окончательных законах физики. Также автор подчёркивает, что не видит положительного зерна в попытках примирить науку и религию и найти между ними точки соприкосновения. Аналогично трактуется и религия в целом, а попытки искать утешения в иррациональном рассматривает как неспособность трезво взглянуть в лицо действительности. Каждый должен понять, что человечество не является чем-то значительным в рамках Вселенной, а в попытке прийти к окончательной теории физики движимы никак не попыткой найти в ней нечто божественное, а чувством прекрасного: «Эта книга посвящена великому интеллектуальному приключению — поиску окончательных законов природы. Мечта об окончательной теории во многом вдохновляет работы в области физики высоких энергий. Хотя мы и не знаем, как могут выглядеть окончательные законы или сколько лет пройдёт, прежде чем они будут открыты, всё же мы полагаем, что уже в современных теориях улавливаются проблески контуров окончательной теории».


Тот тип красоты, которую физик обнаруживает в строгих физических теориях, очень ограничен, и это отнюдь не доступная невооружённому глазу красота редких качеств и свойств, а позволяющая с помощью эстетических суждений найти научные объяснения и оценить их пригодность. В чём же обретает физик ощущение красоты, которое помогает не только создавать теории, описывающие реальный мир, но и оценивать их справедливость, в то время как они ещё не имеют эмпирической базы или даже ей противоречат? И как получается, что полученные с помощью такого критерия математические структуры в конце концов находят применение в физике, несмотря на то, что в процессе их разработки математики зачастую и не помышляют о каком-либо их применении в физике? Читайте объяснение в нижеследующем отрывке из книги, публикуемом с разрешения Стивена Вайнберга.

Красивые теории

«Я упоминал, что принципы симметрии придают теориям определенную жесткость. Может показаться, что это недостаток, что физик хочет развивать теории, способные охватить как можно более широкий круг явлений, и поэтому предпочел бы, чтобы теории были как можно более гибкими и не теряли смысла при самых разных обстоятельствах. Да, во многих областях науки это верно, но только не в той области фундаментальной физики, о которой идет речь. Мы находимся на пути к чему-то универсальному, к чему-то, что управляет физическими явлениями везде во Вселенной, к тому, что мы называем законами природы. Мы не хотим разрабатывать теорию, способную описать все мыслимые типы сил, которые могли бы действовать между частицами в природе. Напротив, мы надеемся найти такую теорию, которая жестко позволила бы нам описать только те силы — гравитационную, электрослабую и сильную, которые существуют на самом деле. Жесткость такого рода в наших физических теориях есть часть того, что мы понимаем под их красотой.

Но не только принципы симметрии придают нашим теориям жесткость. Основываясь только на этих принципах, мы не смогли бы прийти к электрослабой теории или квантовой хромодинамике; эти теории выступали бы как частные случаи намного более широкого круга теорий с неограниченным набором настраиваемых констант, которые могли бы выбираться совершенно произвольно. Дополнительные ограничения, позволяющие отобрать нашу простую стандартную модель из множества других, более сложных, теорий, удовлетворяющих тем же принципам симметрии, связаны с требованием, чтобы полностью сокращались все бесконечности, которые возникают в вычислениях. (Иначе говоря, теория должна быть "перенормируемой".) Это условие, как оказывается, придает уравнениям теории большую простоту и вместе с разными локальными симметриями позволяет придать законченную форму нашей стандартной модели элементарных частиц.

Красота, которую мы обнаруживаем в таких теориях, как ОТО или стандартная модель, сродни той красоте, которую мы ощущаем в некоторых произведениях искусства благодаря вызываемому ими ощущению законченности и неизбежности: не хочется менять ни одной ноты, ни одного мазка кисти, ни одной строки. Однако, как и в нашем восприятии музыки, живописи или поэзии, это ощущение неизбежности есть дело вкуса и опыта и не может быть сведено к "сухой" формуле.

Каждые два года лаборатория им. Лоуренса в Беркли издает маленькую книжечку, в которой перечислены известные на данный момент свойства элементарных частиц1. Если я выскажу утверждение: фундаментальным законом природы является то, что элементарные частицы имеют свойства, которые перечислены в книжечке, то отсюда можно будет сделать вывод, что известные свойства элементарных частиц следуют из этого фундаментального принципа. Этот принцип даже имеет некоторую предсказательную силу: каждый новый протон или электрон, созданный в наших лабораториях, будет иметь те самые массу и заряд, которые указаны в этой книжечке. Но, взятый сам по себе, этот принцип настолько уродлив, что никто и не подумает, будто вопрос исчерпан. Уродливость этого принципа — в отсутствии простоты и неизбежности. Ведь книжечка содержит тысячи чисел, и любое из них можно изменить, не превратив остальную информацию в глупость. Нет никакой логической формулы, которая устанавливала бы четкую границу между красивой теорией, способной что-то объяснить, и простым перечислением данных, но мы знаем, что эта граница существует, когда мы ее видим: мы требуем простоты и жесткости наших принципов, прежде чем принять их всерьез. Итак, наши эстетические суждения есть не только средство, помогающее нам найти научные объяснения и оценить их пригодность; эти суждения есть часть того, что мы подразумеваем под объяснением.

Иные ученые иногда подшучивают над физиками, занимающимися элементарными частицами, так как сейчас открыто столько так называемых элементарных частиц, что нам приходиться все время таскать с собой упомянутую книжечку, чтобы в нужный момент вспомнить о характеристиках какой-то из них. Но само по себе число частиц несущественно. Как сказал Абдус Салам, природа экономит! не на частицах или силах, а на принципах. Важно установить набор простых, экономных принципов, которые объясняли бы, почему частицы такие, какие они есть. Конечно, огорчительно, что до сих пор у нас нет полной теории того типа, которого хотелось бы. Но когда такая теория будет построена, уже будет не очень существенно, сколько сортов частиц или сил она описывает, если только она делает это красиво, как неизбежное следствие простых принципов.

Тот тип красоты, который мы обнаруживаем в физических теориях, очень ограничен. Если только мне удалось правильно схватить суть и выразить ее в словах, речь идет о красоте простоты и неизбежности, о красоте идеальной структуры, красоте подогнанных друг к другу частей целого, красоте неизменяемости, логической жесткости. Такая красота классически строга и экономна, она напоминает красоту греческих трагедий. Но ведь это не единственный тип красоты, известный нам в искусстве. Например, мы не найдем этой красоты в пьесах Шекспира, по крайней мере, если не касаться его сонетов. Часто постановщики шекспировских пьес выкидывают целые куски текста. В экранизации "Гамлета" Лоуренсом Оливье Гамлет не говорит: "О, что за дрянь я, что за жалкий раб!.." И тем не менее пьеса не разрушается, так как шекспировские пьесы не обладают совершенной и экономной структурой, как общая теория относительности или "Царь Эдип"; наоборот, эти пьесы представляют собой запутанные композиции, причем их беспорядочность отражает сложность реальной жизни. Все это составляет часть красоты пьес Шекспира, которая, на мой вкус, более высокого порядка, чем красота пьесы Софокла или красота ОТО. Пожалуй, самые сильные моменты в пьесах Шекспира — это те, когда он полностью пренебрегает канонами греческой трагедии и внезапно вводит в действие комичного простака, какого-нибудь слугу, садовника, продавца смокв или могильщика, и делается это как раз перед тем, как главные герои пьесы встречаются со своей судьбой. Несомненно, красота теоретической физики была бы очень дурным образцом для произведений искусства, но так или иначе она доставляет нам радость и служит путеводной нитью.

Есть и еще одно обстоятельство, которое заставляет меня думать, что теоретическая физика — плохой образец для искусств. Наши теории очень закрыты для всеобщего обозрения, причем по необходимости, так как мы вынуждены пользоваться при развитии этих теорий языком математики, не ставшей пока что частью интеллектуального багажа всей образованной публики. Вообще говоря, физики не любят признаваться, что их теории так эзотеричны. С другой стороны, я не один раз слышал, как некоторые художники с гордостью говорили о том, что их картины доступны для понимания только маленькой группе единомышленников, и в качестве подтверждения ссылались на пример физических теорий, вроде общей теории относительности, которые также понятны лишь избранным. Конечно, художники, как и физики, не всегда могут быть понятными широкой публике, однако эзотеризм как самоцель — просто глупость.

Хотя мы ищем теории, красота которых основана на жесткости, которую дают простые основополагающие принципы, все же создание теории — это не просто математический вывод следствий из набора заранее предписанных принципов. Эти принципы часто формулируются в процессе нашего продвижения вперед, иногда специально в такой форме, которая приводит к желаемой нами степени жесткости теории. У меня нет сомнений в том, что одна из причин, по которой Эйнштейн был так удовлетворен собственной идеей об эквивалентности гравитации и инерции, заключалась в том, что этот принцип приводил лишь к одной-единственной достаточно удовлетворительной теории тяготения, а не к бесконечно большому множеству возможных теорий. Получение следствий из определенного набора четко сформулированных физических принципов может оказаться делом сложным или не очень, но именно этому и учат физиков в высшей школе, и именно этим они, вообще говоря, любят заниматься. Формулировка же новых физических принципов — мучительный процесс, и этому, по-видимому, нельзя научить.

Красота физических теорий находит отражение в жестких математических структурах, основанных на простых основополагающих принципах. Поразительно, что даже если принципы оказываются неверными, структуры, обладающие красотой подобного типа, выживают. Хорошим примером является теория электрона Дирака. В 1928 г. Дирак попытался пересмотреть шредингеровскую версию квантовой механики, основанную на волнах частиц, с тем чтобы совместить ее с специальной теорией относительности. Эта попытка привела Дирака к выводу, что электрон должен обладать определенным спином и что Вселенная заполнена ненаблюдаемыми электронами с отрицательной энергией, отсутствие которых в определенной точке наблюдалось бы в лаборатории как наличие электрона с противоположным зарядом, т.е. античастицы электрона. Теория Дирака завоевала необычайный авторитет после открытия в 1932 г. в космических лучах как раз такой античастицы электрона, получившей название позитрона. Эта теория стала ключевой составной частью квантовой электродинамики, развитой и успешно примененной для анализа физических явлений в 30-х и 40-х гг. Однако сегодня мы знаем, что точка зрения Дирака была во многом ошибочной. Правильным способом объединения квантовой механики и специальной теории относительности оказалась не релятивистская версия волновой механики Шрёдингера, как думал Дирак, а более общий формализм, разработанный Гейзенбергом и Паули в 1929 г. и известный под названием квантовой теории поля. В этой теории не только фотон рассматривается как сгусток энергии поля, а именно электромагнитного поля, но и электроны, и позитроны являются сгустками энергии электронного поля, и все другие частицы представляют сгустки энергии различных полей. Почти по случайным причинам дираковская теория электрона приводила к тем же результатам; что и квантовая теория поля, для процессов с участием только электронов, позитронов и фотонов. Но квантовая теория поля является значительно более общей: она может рассматривать процессы типа ядерного бета-распада, которые совершенно непостижимы в рамках теории Дирака [1], в квантовой теории поля нет никаких специальных требований, чтобы частица имела какой-то определенный спин. Оказалось, что спин электрона как раз такой, какой требует теория Дирака, но есть и другие частицы, с другими спинами, и у них тоже есть античастицы, причем все это не имеет никакого отношения к отрицательным энергиям и связанным с ними рассуждениям Дирака [2]. Однако математический формализм дираковской теории сохранился как существенная часть квантовой теории поля. Его обязаны изучать в любом курсе лекций по современной квантовой теории для старшекурсников. Таким образом, формальная структура теории Дирака пережила смерть принципов релятивистской волновой теории, которым следовал Дирак при построении своей теории.

Итак, математические структуры, развиваемые учеными для реализации физических принципов, обладают странным свойством подвижности. Их можно переносить от одного концептуального окружения к другому, они могут служить разным целям. Так, лопаточные кости в теле человека играют роль соединения между крыльями и телом птицы или ластами и телом дельфина. Физические принципы приводят к красивым структурам, которые остаются жить, даже когда умирают принципы.

Возможное объяснение было предложено Нильсом Бором [3]. Рассуждая в 1922 г. о будущем своей ранней теории строения атомов" он заметил, что "в математике существует ограниченное число форм, которые нам удается использовать для описания природы, и может так случиться, что кто-нибудь обнаружит правильные формы, исходя из совершенно неверных представлений". Бор оказался совершенно прав в отношении будущего собственной теории: принципы, лежащие в ее основе, были отвергнуты, но мы до сих пор используем некоторые элементы ее языка и методы вычислений.

Именно применение чистой математики к физике дает поразительные примеры эффективности эстетических суждений. Уже давно стало общим местом утверждение, что математики руководствуются в своей работе желанием построить такой формализм, принципы которого красивы. Английский математик Г. Харди пояснял, что "математические структуры должны быть так же красивы, как те, которые используют художники или поэты. Идеи, как краски или слова, должны гармонично сочетаться друг с другом. Красота — первый тест. Уродливой математике нет места" [4]. И вот оказалось, что благоговейно разрабатывавшиеся математиками структуры, в которых они искали красоту, позднее часто становились необычайно важными для физиков.

Для иллюстрации вернемся к примеру с неевклидовой геометрией и общей теорией относительности. В течение двух тысяч лет после Евклида математики пытались выяснить, являются ли независимыми друг от друга те предположения, которые лежат в основе евклидовой геометрии. Если постулаты не независимы, если какие-то из них могут быть выведены из других, тогда лишние должны быть отброшены, что приведет к более экономной, а следовательно более красивой формулировке геометрии. Попытки разобраться в структуре евклидовой геометрии достигли пика к началу XIX в., когда "король геометров" Карл Фридрих Гаусс и другие ученые [5] разработали неевклидову геометрию, применимую для искривленного пространства определенного типа, в котором выполнены все постулаты Евклида, кроме пятого [6]. Этим было доказано, что пятый постулат Евклида действительно логически независим от остальных. Новая геометрия была построена, чтобы ответить на давний вопрос об основаниях геометрии, а совсем не для того, чтобы применять ее к реальному миру.

Затем один из величайших математиков, Георг Фридрих Бернгард Риман, развил неевклидову геометрию, обобщив ее на общую теорию искривленных пространств в двух, трех или произвольном числе измерений. Не имея никакого представления о возможных физических приложениях, математики продолжали трудиться над развитием римановой геометрии, так как она поражала своей красотой. Эта красота во многом опять была красотой неизбежности. Достаточно начать размышлять над свойствами искривленных пространств, и вы почти неизбежно придете к необходимости введения математических понятий (метрика, аффинная связность, тензор кривизны), являющихся неотъемлемыми частями римановой геометрии. Когда Эйнштейн начал развивать общую теорию относительности, он вскоре понял, что один из способов реализации его идей о симметрии между различными системами отсчета заключается в том, чтобы описать тяготение как кривизну пространства-времени. Эйнштейн поинтересовался у своего друга, математика Марселя Гроссмана, не существует ли какой-нибудь теории искривленных пространств — не просто искривленных двумерных поверхностей в обычном трехмерном евклидовом пространстве, а искривленных трехмерных и даже четырехмерных пространств? Гроссман обрадовал Эйнштейна, сказав, что такой математический формализм существует, он развит Риманом и другими математиками. Более того, Гроссман обучил Эйнштейна этой математике, которая затем вошла составной частью в общую теорию относительности. Таким образом, получается, что математика ждала появления Эйнштейна, который сумел ее использовать для физики, хотя я полагаю, что ни Гаусс, ни Риман, ни другие специалисты по дифференциальной геометрии XIX в. понятия не имели, что их работа когда-нибудь будет иметь хоть какое-то отношение к физической теории тяготения.

Еще более странным является пример с историей открытия принципов внутренней симметрии. В физике эти принципы обычно отражают нечто вроде семейных связей между отдельными членами в списке возможных элементарных частиц. Первый известный пример такой симметрии связан с двумя типами частиц, из которых состоят обычные атомные ядра, — протоном и нейтроном. Массы протона и нейтрона почти одинаковы, так что, когда нейтрон был открыт Джеймсом Чедвиком в 1932 г., сразу же возникло естественное предположение, что сильные ядерные силы (дающие вклад в массы нейтрона и протона) должны обладать простой симметрией: уравнения, определяющие эти силы, должны сохранять свой вид, если везде в них поменять местами роли протонов и нейтронов. Помимо прочего, из такой гипотезы следует, что сильные ядерные силы, действующие между двумя нейтронами, равны таким же силам, действующим между двумя протонами. Однако ничего нельзя сказать о силе, действующей между протоном и нейтроном. Поэтому несколько неожиданным оказался результат экспериментов, подтвердивших в 1936 г., что ядерные силы, действующие между двумя протонами, равны таким же силам, действующим между протоном и нейтроном [7]. Это наблюдение породило идею симметрии, выходящей за рамки простой замены протонов на нейтроны и наоборот. Речь идет о симметрии по отношению к непрерывным преобразованиям, превращающим протоны и нейтроны в частицы, являющиеся суперпозициями протонов и нейтронов, с произвольной вероятностью находиться в протонном или нейтронном состояниях.

Подобные преобразования симметрии действуют на метку частицы, которая отличает протоны от нейтронов, способом, который математически совпадает с тем, как обычные вращения в трехмерном пространстве действуют на спины частиц, вроде протона, нейтрона или электрона [8]. Помня об этом примере, многие физики вплоть до начала 60-х гг. молчаливо предполагали, что по аналогии с вращениями, переводящими протон и нейтрон друг в друга, все преобразования внутренней симметрии, оставляющие неизменными законы природы, должны иметь форму вращений в некотором внутреннем пространстве двух, трех или более измерений. Учебники, в которых излагалось применение принципов симметрии к физике (включая классические книги Германа Вейля и Юджина Вигнера) даже не упоминали о других математических возможностях. Только в конце 50-х гг., после открытия множества новых частиц сначала в космических лучах, а позднее на ускорителях вроде бэватрона в Беркли, в среде физиков-теоретиков возникло более широкое понимание возможностей описания внутренних симметрии. Новые частицы, казалось, объединялись в значительно более обширные семейства, чем простая пара протон—нейтрон. Например, обнаружилось, что протон и нейтрон несут черты фамильного сходства с шестью другими частицами, называемыми гиперонами и имеющими тот же спин и близкие массы. Какой же тип внутренней симметриии может порождать такие обширные родственные группы?

В начале 60-х гг. физики, занимавшиеся этим вопросом, обратились за помощью к литературе по математике. Для них оказалось приятным сюрпризом, что математики уже давно составили в некотором смысле полный каталог всех возможных симметрии. Полный набор преобразований, оставляющих что-то неизменным, будь то конкретный объект или законы природы, образует математическую структуру, называемую группой, а раздел математики, изучающий преобразования симметрии, называется теорией групп [9]. Каждая группа характеризуется абстрактными математическими правилами, не зависящими от того, что подвергается преобразованию, так же как правила арифметики не зависят от названий тех величин, которые мы складываем или умножаем. Список типов семейств, разрешенных каждой конкретной симметрией законов природы, полностью определяется математической структурой группы симметрии.

Те группы преобразований, которые действуют непрерывно, наподобие вращений в обычном пространстве или смешивания электронов и нейтрино в электрослабой теории, называются группами Ли — по имени норвежского математика Софуса Ли. Французский математик Эли Картан в своей диссертации в 1894 г. дал полный список всех "простых" групп Ли [10], с помощью комбинаций которых можно построить все остальные группы. В 1960 г. Мюррей Гелл-Манн и израильский физик Ювал Нееман независимо обнаружили, что одна из этих простых групп Ли, известная под названием SU(3), как раз правильно описывает структуру семейств множества элементарных частиц в согласии с экспериментальными данными. Гелл-Манн позаимствовал некоторые понятия буддизма и назвал новую симметрию восьмеричным путем2, так как известные на опыте частицы лучше всего делились на семейства по восемь членов, как протон, нейтрон и шесть их родственников. К тому времени не все семейства были полными. Так, нужна была новая частица, чтобы заполнить семейство из десяти частиц, похожих на нейтрон, протон и гипероны, но имеющих втрое больший спин. Одним из больших успехов новой SU(3) симметрии стало то, что предсказанная частица была обнаружена в 1964 г. в Брукхейвене [11], причем значение ее массы совпало с теоретической оценкой Гелл-Манна.

Теория групп, оказавшаяся столь полезной для физики, была на самом деле придумана математиками по причинам, относящимся к сугубо внутренним математическим проблемам. Толчок к развитию теории групп дал в начале XIX в. Эварист Галуа в своем доказательстве того, что не существует общих формул для решения определенных алгебраических уравнений (включающих пятую или более высокую степень неизвестной величины) [12]. Ни Галуа, ни Ли, ни Картан не имели ни малейшего представления, как можно было бы применить теорию групп в физике.

Чрезвычайно удивительно, что чувство математической красоты всегда приводило математиков к построению формальных структур, которые оказывались впоследствии полезными для физиков, даже несмотря на то, что сами математики ни о чем подобном не помышляли. В широко известном эссе физика Юджина Вигнера [13] это явление так и называется: "непостижимая эффективность математики". Физики считают, что способность математиков предвидеть, какие математические средства понадобятся для развития физических теорий, совершенно фанатастична. Это похоже на то, как если бы Нейл Армстронг, делая в 1969 г. первые шаги по поверхности Луны, увидел бы в лунной пыли отпечатки сапог Жюля Верна.

Так в чем же обретает физик ощущение красоты, которое помогает не только открывать теории, описывающие реальный мир, но и оценивать справедливость этих теорий, иногда противоречащих существующим экспериментальным данным? И каким образом чувство математической красоты приводит к построению структур, которые десятилетия спустя оказываются полезными для физиков, несмотря на то, что сами математики совершенно не интересуются физическими приложениями?

Мне кажется, что имеются три приемлемых объяснения, два из которых применимы к большинству разделов науки вообще, а третий относится именно к наиболее фундаментальным вопросам физики. Первое объяснение заключается в том, что сама Вселенная воздействует на нас как случайная, неэффективная, но все же, если взять большой промежуток времени, мощная обучающая машина. Точно так же, как в результате серии случайных событий атомы углерода, азота, водорода и кислорода соединились вместе, образовав примитивные формы жизни, которые затем эволюционировали в простейшие живые существа, рыб и человека, так и в наших взглядах на Вселенную постоянно происходил естественный отбор идей. Преодолевая бесчисленное множество фальстартов, мы сумели вбить себе в головы, что природа устроена определенным образом, и выросли с мыслью, что именно это устройство природы прекрасно.

Похожим образом, вероятно, каждый из нас объяснил бы, почему чувство прекрасного помогает тренеру угадать, какая из лошадей выиграет скачку. Тренер много лет не покидает ипподром, он видел бесчисленное множество как выигравших, так и проигравших лошадей, и он научился, даже не умея это выразить словами, сопоставлять какие-то наглядные приметы с ожиданием, что именно эта лошадь победит.

Одно из занятий, делающих историю науки бесконечно увлекательной, заключается в том, чтобы проследить за медленным изменением наших представлений о типе красоты, ожидаемой в природе. Однажды я пустился в раскопки оригинальных статей 30-х гг., посвященных первым попыткам формулировки принципов внутренней симметрии в ядерной физике, той симметрии, о которой выше упоминалось как о симметрии между протонами и нейтронами. Моя цель была в том, чтобы найти ту первую статью, в которой этот принцип симметрии сформулирован так, как это делается в наши дни, т.е. как фундаментальный самостоятельный закон ядерной физики, не зависящий от конкретной теории ядерных сил. Я не смог найти такой статьи. Создалось впечатление, что в 30-е гг. писать статьи, посвященные принципам симметрии, считалось дурным тоном. Хорошим же тоном считалось писать статьи о ядерных силах. Если оказывалось, что силы обладают определенной симметрией, тем лучше. Так, если вам были известны силы, действующие между протоном и нейтроном, вам не надо было гадать, какие силы действуют между двумя протонами. Но сам по себе принцип симметрии не рассматривался, как я уже сказал, как свойство, обосновывающее справедливость теории и делающее ее красивой. Принципы симметрии рассматривались как математические трюки; реальное же дело физиков было в том, чтобы разрабатывать динамическую теорию наблюдаемых сил.

Сейчас времена изменились. Если экспериментаторам удается открыть какие-то новые частицы, образующие те или иные семейства, вроде протон-нейтронного дублета, тут же почтовый ящик заполняется сотнями препринтов теоретических статей, рассуждающих на тему о том, какая же симметрия определяет структуру этих семейств. Если обнаружится новый тип сил, мы все начнем размышлять о том, какая же симметрия определяет существование этой силы. Очевидно, что мы изменились благодаря обучающему воздействию природы, которая привила нам ощущение красоты, отсутствовавшее в наших первоначальных представлениях.

Даже математики живут все-таки в реальном мире и откликаются на его уроки. В течение двух тысячелетий школьникам преподавалась геометрия Евклида как почти идеальный пример абстрактного дедуктивного способа мышления. Однако благодаря общей теории относительности мы узнали в XX в., что евклидова геометрия хорошо работает только потому, что гравитационное поле на поверхности Земли довольно слабо, так что пространство, в котором мы живем, не имеет заметной кривизны. Формулируя свои постулаты, Евклид действовал, по-существу, как физик, используя свой опыт жизни в слабых гравитационных полях эллинистической Александрии для создания теории неискривленного пространства. Он не мог знать, насколько ограничена и обусловлена его геометрия. Действительно, только сравнительно недавно мы научились отличать чистую математику от той науки, к которой она применяется. Лукасовскую кафедру в Кембридже занимали Ньютон и Дирак, но тем не менее официально она до сих называется кафедрой математики, а не физики. Только развитие строгого и абстрактного стиля математического мышления [14], восходящее к работам Огюстена Луи Коши и других математиков в начале XIX в., привело к тому, что идеалом математиков стало, чтобы их работы были независимы от опыта и здравого смысла.

Вторая причина, почему мы считаем, что успешные физические теории должны быть красивы, заключается просто в том, что ученые стремятся выбирать для исследования только такие задачи, у которых можно ожидать красивых решений. Точно такой же стиль рассуждений присущ и нашему другу — тренеру. Его работа — тренировать лошадей для того, чтобы они выигрывали скачки; он научился определять, какая из лошадей имеет больше шансов на выигрыш, и называет таких лошадей красивыми; но если вы отведете тренера в сторонку и пообещаете никому не передавать то, что он скажет, то он поклянется вам, что единственная причина, почему он занят этим делом — тренировкой лошадей для выигрыша скачек, заключается в том, что лошади, которых он тренирует, чертовски красивы.

Хороший пример сказанного в физике — явление мягких фазовых переходов3, например спонтанного исчезновения намагниченности при нагревании постоянного железного магнита до температуры выше 770 °С, известной как точка Кюри. Поскольку переход мягкий, намагниченность куска железа обращается в нуль постепенно, при приближении температуры к точке Кюри. Удивительным в таких фазовых переходах является закон, по которому намагниченность стремится к нулю. Оценивая различные энергии в магните, физики были склонны предполагать, что, когда температура чуть ниже точки Кюри, намагниченность должна быть просто пропорциональна квадратному корню из разности между температурой Кюри и температурой нагрева. Вместо этого экспериментально наблюдается, что намагниченность пропорциональна этой разности в степени 0,37. Иными словами, зависимость намагниченности от температуры оказывается где-то в промежутке между законом пропорциональности квадратному корню (показатель степени 0,5) и кубическому корню (показатель степени 0,33) из разности между температурой Кюри и температурой нагрева магнита.

Степени типа 0,37 называются критическими показателями, иногда с добавлением слов "неклассические" или "аномальные", так как эти показатели отличаются от ожидаемых. Было обнаружено, что существуют и другие величины, ведущие себя аналогичным образом в разного рода фазовых переходах, причем в некоторых случаях критические показатели были теми же самыми. Те явления, где возникают критические показатели, не столь впечатляют, как черные дыры или расширение Вселенной. Тем не менее ряд выдающихся физиков-теоретиков во всем мире занимался проблемой критических показателей, пока наконец она не была решена в 1972 г. учеными из Корнеллского университета (США) Кеннетом Вильсоном и Майклом Фишером. Можно было бы думать, что точное вычисление самой точки Кюри имеет значительно больший практический интерес. Почему же корифеи физики твердого тела считали проблему критических показателей намного более важной?

Я полагаю, что эта проблема привлекала такое внимание потому, что физики чувствовали, что она должна иметь очень красивое решение. Указания на это вытекали прежде всего из факта универсальности явления, из того, что одни и те же критические показатели возникали в совершенно разных задачах. Кроме того, физики давно привыкли к тому, что наиболее существенные свойства физических явлений часто выражаются в форме закона, связывающего какую-то физическую величину со степенями других величин (примером может служить закон обратных квадратов для тяготения). Оказалось, что теория критических показателей обладает такой простотой и неизбежностью, что она стала одной из самых красивых теорий во всей физике. В то же время проблема вычисления точной температуры фазовых переходов необычайно запутанна, и ее решение требует знания сложных деталей устройства железа или других веществ, в которых происходит фазовый переход. Люди занимаются этой задачей либо исходя из практических потребностей, либо за неимением лучшего.

В ряде случаев первоначальные надежды ученых на построение красивой теории не оправдывались в полной мере. Хорошим примером может служить история открытия генетического кода. Фрэнсис Крик в своей автобиографии [15] рассказывает, как после открытия им и Джеймсом Уотсоном структуры ДНК в виде двойной спирали внимание всех специалистов по молекулярной биологии обратилось на расшифровку кода, с помощью которого клетка считывает последовательность химических оснований в двух спиралях ДНК как программу для построения нужных белковых молекул. Было известно, что белки строятся из цепочек аминокислот, что существует только двадцать аминокислот, существенных для функционирования практически всех животных и растений, что информация для выбора каждой последующей аминокислоты в молекуле белка заложена в выборе трех последовательных пар химических единиц, называемых основаниями, и, наконец, что имеются только четыре разных типа таких пар. Таким образом, генетический код содержит запись о трех последовательных комбинациях, каждая из которых выбрана из четырех возможных пар оснований, определяющих выбор каждой следующей аминокислоты из двадцати возможных, входящей в состав белковой молекулы. Молекулярные биологи предлагали кучу красивых принципов, управляющих этим кодом, например, что при выборе трех пар оснований никакая информация не будет растрачена впустую, и что любая информация, не требующаяся для определения аминокислоты, будет использована для поиска ошибок (как в компьютерных сетях, когда от одного компьютера к другому передаются лишние биты информации, чтобы убедиться в точности передачи сообщения). Ответ, найденный в 1960 г., оказался совсем иным. Генетический код во многом случаен: некоторые аминокислоты шифруются более чем одной тройкой пар оснований и, наоборот, некоторые тройки пар ничему не соответствуют [16]. Конечно, генетический код не настолько плох, как полностью случайный код, откуда следует, что код как-то менялся в ходе эволюции, но все же любой специалист по передаче сообщений придумал бы код получше. Причина, конечно, в том, что генетический код не был создан, а развивался за счет случайных воздействий с самого начала возникновения жизни на Земле и был унаследован примерно в одном и том же виде всеми организмами. Ясно, что понимание генетического кода настолько важно, что мы изучаем его независимо от того, насколько он красив, но все же немножко жалко, что код оказался не таким красивым, как хотелось бы.

Иногда, когда нас подводит чувство красоты, это происходит потому, что мы переоцениваем фундаментальный характер того, что собираемся объяснить. Знаменитым примером служит работа молодого Иоганнеса Кеплера, посвященная размерам орбит планет.

Кеплер знал об одном из самых красивых утверждений, полученных греческими математиками, касающемся так называемых платоновских тел. Это трехмерные тела с плоскими гранями, причем все вершины, все грани и все ребра этих тел одинаковы. Очевидным примером является куб. Древние греки доказали, что существует всего пять таких платоновских тел: треугольная пирамида (тетраэдр), куб, восьмигранный октаэдр, двенадцатигранный додекаэдр и двадцатигранный икосаэдр. (Свое название эти тела получили потому, что Платон в Тимее предложил взаимно-однозначное соответствие между этими пятью телами и предполагаемыми пятью основными элементами. Такую точку зрения затем критиковал Аристотель.) Существование платоновских тел — пример необычайной математической красоты; она сродни красоте картановского списка всех возможных непрерывных принципов симметрии.

В своем сочинении Mysterium cosmographicum Кеплер предположил, что существование ровно пяти платоновских тел объясняет, почему существует ровно пять (не считая Земли) планет: Меркурий, Венера, Марс, Юпитер и Сатурн (в те времена Уран, Нептун и Плутон еще не были открыты). Каждой из этих пяти планет Кеплер сопоставил одно из платоновских тел, после чего он предположил, что радиусы орбит каждой из планет пропорциональны радиусам соответствующих платоновских тел, если их вписать одно в другое в нужном порядке. Кеплер писал, что он исправлял нерегулярности в движении планет "до тех пор, пока они не стали соответствовать законам природы" [17].

Современному физику может показаться чудовищным, что один из основоположников современной картины мира мог предлагать столь смехотворную модель Солнечной системы. И дело не только в том, что кеплеровская схема не соответствует наблюдениям планет Солнечной системы (а это на самом деле так), но прежде всего в том, что мы знаем, что подобные спекуляции не имеют отношения к истинным законам, управляющим движениями планет. Но Кеплер не был дураком. Тот способ спекулятивного мышления, который он использовал для объяснения структуры Солнечной системы, очень напоминает способ теоретизирования современных физиков, занимающихся элементарными частицами: мы не ассоциируем что-то с платоновскими телами, но верим в то, что существует, например, соответствие между разными возможными силами в природе и разными симметриями из картановского списка всех возможных симметрии. Кеплер ошибался не тогда, когда использовал подобный способ угадывания истины, а тогда, когда считал (как и многие философы до него), что движение планет представляет собой важное явление.

Конечно, в каких-то отношениях планеты важны. На одной из них мы живем. Но существование планет не входит на фундаментальном уровне в число законов природы. Мы сегодня знаем, что планеты и их орбиты есть результат совокупности исторических случайностей, и, хотя физическая теория может предсказать, какие орбиты стабильны, а какие нет, нет никаких причин предполагать наличие специальных соотношений между радиусами этих орбит, которые отличались бы особой математической простотой и красотой.

Ожидать красивых ответов мы можем только тогда, когда изучаем поистине фундаментальные проблемы. Мы верим, что когда спрашиваем, почему мир такой, какой есть, а затем спрашиваем, почему предыдущий ответ такой, а не иной, то в конце этой цепочки объяснений мы обнаружим несколько простых принципов поразительной красоты. Мы думаем так отчасти потому, что наш исторический опыт учит, что чем глубже мы проникаем в суть вещей, тем больше красоты находим. Платон и неоплатоники учили, что красота в природе есть отражение красоты высшего мира идей. Мы также считаем, что красота современных теорий есть проявление и предвестник красоты окончательной теории. В любом случае мы не признаем ни одну теорию за окончательную, если она не будет красивой.

Хотя до сих пор мы не можем точно почувствовать, когда необходимо в работе обращаться к чувству прекрасного, все же в физике элементарных частиц эстетические суждения, по-видимому, работают все лучше и лучше. Я считаю это свидетельством того, что мы движемся в правильном направлении и, может быть, находимся не так уж далеко от нашей цели».

Комментарии Стивена Вайнберга

1. В дираковской теории электроны вечны. Процесс рождения электрона и позитрона интерпретируется как переход электрона отрицательной энергии в состояние положительной энергии с появлением дырки в море электронов отрицательных энергий, которая наблюдается как позитрон. Аннигиляция электрона и позитрона интерпретируется как падение электрона в эту дырку. В ядерном бета-распаде электроны рождаются без позитронов за счет энергии и электрического заряда электронного поля.

2. В начале 70-х гг. Дирак и я были на конференции во Флориде. Я воспользовался случаем и спросил его, как он может объяснить тот факт, что существуют частицы (вроде пи-мезона или W), которые имеют спин, отличный от спина электрона, и не могут иметь стабильных состояний отрицательной энергии, но тем не менее имеют определенные античастицы. Дирак ответил, что он никогда не думал, что эти частицы существенны.

3. Из воспоминаний Гейзенберга. Цит. по работе Telegdi V. and Weisskopf V. // Physics Today July 1991, p. 58. Такое же мнение по поводу ограниченности многообразия, возможных математических форм было высказано математиком Э. Глисоном.

4. Всю свою жизнь Харди гордился, что его исследования в чистой математике, возможно, не будут иметь никаких практических применений, Но когда Керзон Хуанг и я работали в МТИ над поведением вещества при экстремально высокой температуре, мы нашли необходимые нам формулы в работе Харди и Рамануджана по теории чисел.

5. Другими главными строителями искривленного пространства были Янош Больяи и Николай Иванович Лобачевский. Работы Гаусса, Больяи и Лобачевского были важными для будущего развития математики, поскольку они описали такое пространство не просто как искривленное наподобие поверхности Земли и погруженное в неискривленное пространство более высокой размерности, а как обладающее внутренней кривизной, без каких-либо ссылок на то, как это пространство погружено в высшие измерения.

6. Одна из версий пятого постулата Евклида утверждает, что через данную точку вне данной прямой можно провести одну и только одну прямую, параллельную данной. В новой неевклидовой геометрии Гаусса, Больяи и Лобачевского можно провести много таких параллельных прямых.

7. Эти эксперименты были сделаны М. Туве вместе с Н. Хейденбергом и Л. Хафстадом с помощью ускорителя Ван де Граафа напряжением 1 млн В, который выстреливал пучок протонов на богатую протонами мишень типа парафина.

8. По этой причине такая симметрия называется симметрией изотопического спина (Она была предложена в 1936 г. Г. Брейтом и Ю. Финбергом и независимо Б. Кассеном и Ю. Кондоном на основании экспериментов Туве и др.) Симметрия изотопического спина математически аналогична внутренней симметрии, лежащей в основе слабых и электромагнитных взаимодействий в электрослабой теории, но физически эти симметрии различны. Одно отличие заключается в том, что в семейства группируются разные частицы: протон и нейтрон в случае симметрии изотопического спина и левые электрон и нейтрино, а также левые u— и d-кварки в случае электрослабой симметрии. Кроме того, электрослабая симметрия утверждает инвариантность законов природы относительно преобразований, которые могут зависеть от положения в пространстве и времени. В то же время уравнения, описывающие ядерную физику сохраняют свой вид, только если мы преобразуем протоны и нейтроны друг в друга одинаково везде и во все моменты времени. Наконец, в рамках современной теории сильных ядерных взаимодействий симметрия изотопического спина является приближенной и воспринимается как случайное следствие малых масс кварков, а электрослабая симметрия точна и считается фундаментальным принципом электрослабой теории.

9. Если два преобразования по-отдельности оставляют что-то неизменным, то это же верно для их «произведения», определяемого как осуществление одного преобразования за другим. Если преобразование оставляет что-то неизменным, то это же верно для обратного преобразования, отменяющего действие первого. Кроме того, всегда существует одно преобразование, оставляющее все неизменным, т.е. преобразование, которое не делает ничего. Это преобразование называют единичным, так как оно действует как умножение на единицу. Если выполнены перечисленные три свойства, то любое множество операций становится группой.

10. Говоря коротко, существуют три бесконечные серии простых групп Ли: знакомые группы вращений в двух, трех и более измерениях и еще две серии преобразований, в чем-то похожих на вращения, которые называются унитарными и симплектическими преобразованиями. Кроме того, существует ровно пять «исключительных» групп Ли, не принадлежащих ни одной из перечисленных серий.

11. Открытие сделала группа ученых под руководством Н. Самиоса.

12. В работе Галуа идет речь о группе перестановок решений уравнения.

13. См. Wigner E.P. The Unreasonable Effectiveness ot Mathematics // Communications in Pure and Applied Mathematics 13 (1960): 1—14. (На русском языке опубликована в книге: Вигнер Э.П. Инвариантность и законы сохранения. Этюды о симметрии. М.: УРСС, 2002.)

14. Richards J.L. Rigor and Clarity: Foundations of Mathematics in France and England, 1800-1840 // Science in Context 4 (1991): 297.

15. Crick F. what Mad Pursuit: A Personal View of Scientific Discovery (New York:
Basic Books, 1988).

16. Строго говоря, триплеты, не имеющие смысла, несут послание «конец цепочки».

17. Из письма Кеплера к Фабрициусу (май 1605 года). Цит. по Zilsel E. The Genesis of the Concept of Physical Law // Philosophical Review 51 (1942): 245.

Примечания

1. Впервые список всех известных частиц для общего пользования был составлен в 1962 г. Леоном Розенфельдом и получил название таблиц Розенфельда. Первые таблицы умещались на одной странице. Сейчас это книжка объемом более двухсот страниц. — Прим. перев.

2. Речь идет о знаменитой первой проповеди Сиддхартхи Гаутамы (Будды), в которой он сформулировал восьмеричный путь избавления от страданий и достижения вечного блаженства (нирваны): правильные взгляды, правильные намерения, правильные речи, правильные действия и т.д. — Прим. перев.

3. То, что я называю "мягким" фазовым переходом, чаще называют "фазовым переходом второго рода". Это делается для того, чтобы отличать такие фазовые переходы от "фазовых переходов первого рода", вроде кипения воды при 100 °С или таяния льда при 0 °С, в которых свойства вещества меняются скачкообразно. На то, чтобы превратить лед при 0 °С в воду при той же температуре или воду при 100 °С в водяной пар, необходимо затратить некоторое количество энергии (так называемой скрытой теплоты). Однако на то, чтобы истребить в куске железа все его магнитные свойства в точке Кюри, никакой дополнительной энергии не требуется.

Получить ссылку на материал

Спасибо!

Также вы можете подписаться на обновления сайта:

Оставить комментарий

Добавить комментарий